Valmet Shoe Press Delamination Detector

warns of impending belt failure

The patented Valmet Shoe Press Delamination Detector* provides early warning of shoe press belt failure and facilitates belt replacement before the onset of runnability or sheet quality problems.

Benefits
- Immediate response to foreign particles in return oil; possible delamination can be verified as early as possible, before it has a chance to affect the papermaking process
- The severity of the belt damage can be evaluated by combining BeltSense data with other process variables and appropriate actions can be taken in time

Benefits of the early detection of belt damage:
- Less broke
- Prevention of mechanical damage
- Preparations for a belt change shutdown can be started while the machine is still running
- Less cleaning work during shutdowns

The shoe press belt is subjected to enormous stress when a clump of stock travels through the press nip. This leads to the delamination of the belt, the rate of which depends on the type of machine involved. Delamination is particularly pronounced with faster machines where the belt may begin to come apart within hours of the incident.

Immediate response
Valmet Shoe Press Delamination Detector filters out and identifies larger than 2 mm solid particles traveling through a shoe press roll’s return oil pipe. The reliable detection method employed quickly signals the control room of impending belt failure. The detector also features a safe sampling solution for confirming the causes of failure alerts.

The detector can be hooked up to Valmet’s remote monitoring system. Remote monitoring facilitates efficient cooperation between mill personnel and Valmet specialists in dealing with belt failures.

*earlier known as BeltSense

For more information, contact your local Valmet office.
valmet.com/solutionfinder, e-mail: paper.service@valmet.com

Specifications in this document are subject to change without notice.
Product names in this publication are all trademarks of Valmet Corporation.